ÓÀÀÖ¹ú¼Ê

ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
ÓÀÀÖ¹ú¼Ê
¹ÉƱ´úÂëΪ£¨300404£©½¨ÉèÓÚ2002Ä꣬2015ÄêÔÚÉîÛÚ´´Òµ°åÉÏÊУ¬ÊÇÒ»¼ÒΪº£ÄÚÍâÒ½Ò©ÆóÒµÌṩҩƷ¡¢±£½¡Æ·¡¢Ò½ÁÆÆ÷еÑз¢ÓëÉú²úÈ«Á÷³Ì¡°Ò»Õ¾Ê½¡±Íâ°ü·þÎñ(CRO)µÄÐ͸ßÐÂÊÖÒÕÆóÒµ£¬Í¬Ò²ÌṩҩƷÉÏÊÐÔÊÐí³ÖÓÐÈË(MAH)·þÎñ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
ÓÀÀÖ¹ú¼Ê
¹ÉƱ´úÂëΪ£¨300404£©½¨ÉèÓÚ2002Ä꣬2015ÄêÔÚÉîÛÚ´´Òµ°åÉÏÊУ¬ÊÇÒ»¼ÒΪº£ÄÚÍâÒ½Ò©ÆóÒµÌṩҩƷ¡¢±£½¡Æ·¡¢Ò½ÁÆÆ÷еÑз¢ÓëÉú²úÈ«Á÷³Ì¡°Ò»Õ¾Ê½¡±Íâ°ü·þÎñ(CRO)µÄÐ͸ßÐÂÊÖÒÕÆóÒµ£¬Í¬Ò²ÌṩҩƷÉÏÊÐÔÊÐí³ÖÓÐÈË(MAH)·þÎñ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
ÓÀÀÖ¹ú¼Ê
¹ÉƱ´úÂëΪ£¨300404£©½¨ÉèÓÚ2002Ä꣬2015ÄêÔÚÉîÛÚ´´Òµ°åÉÏÊУ¬ÊÇÒ»¼ÒΪº£ÄÚÍâÒ½Ò©ÆóÒµÌṩҩƷ¡¢±£½¡Æ·¡¢Ò½ÁÆÆ÷еÑз¢ÓëÉú²úÈ«Á÷³Ì¡°Ò»Õ¾Ê½¡±Íâ°ü·þÎñ(CRO)µÄÐ͸ßÐÂÊÖÒÕÆóÒµ£¬Í¬Ò²ÌṩҩƷÉÏÊÐÔÊÐí³ÖÓÐÈË(MAH)·þÎñ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
ÓÀÀÖ¹ú¼Ê
¹ÉƱ´úÂëΪ£¨300404£©½¨ÉèÓÚ2002Ä꣬2015ÄêÔÚÉîÛÚ´´Òµ°åÉÏÊУ¬ÊÇÒ»¼ÒΪº£ÄÚÍâÒ½Ò©ÆóÒµÌṩҩƷ¡¢±£½¡Æ·¡¢Ò½ÁÆÆ÷еÑз¢ÓëÉú²úÈ«Á÷³Ì¡°Ò»Õ¾Ê½¡±Íâ°ü·þÎñ(CRO)µÄÐ͸ßÐÂÊÖÒÕÆóÒµ£¬Í¬Ò²ÌṩҩƷÉÏÊÐÔÊÐí³ÖÓÐÈË(MAH)·þÎñ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
ÓÀÀÖ¹ú¼Ê
¹ÉƱ´úÂëΪ£¨300404£©½¨ÉèÓÚ2002Ä꣬2015ÄêÔÚÉîÛÚ´´Òµ°åÉÏÊУ¬ÊÇÒ»¼ÒΪº£ÄÚÍâÒ½Ò©ÆóÒµÌṩҩƷ¡¢±£½¡Æ·¡¢Ò½ÁÆÆ÷еÑз¢ÓëÉú²úÈ«Á÷³Ì¡°Ò»Õ¾Ê½¡±Íâ°ü·þÎñ(CRO)µÄÐ͸ßÐÂÊÖÒÕÆóÒµ£¬Í¬Ò²ÌṩҩƷÉÏÊÐÔÊÐí³ÖÓÐÈË(MAH)·þÎñ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
ÓÀÀÖ¹ú¼Ê
¹ÉƱ´úÂëΪ£¨300404£©½¨ÉèÓÚ2002Ä꣬2015ÄêÔÚÉîÛÚ´´Òµ°åÉÏÊУ¬ÊÇÒ»¼ÒΪº£ÄÚÍâÒ½Ò©ÆóÒµÌṩҩƷ¡¢±£½¡Æ·¡¢Ò½ÁÆÆ÷еÑз¢ÓëÉú²úÈ«Á÷³Ì¡°Ò»Õ¾Ê½¡±Íâ°ü·þÎñ(CRO)µÄÐ͸ßÐÂÊÖÒÕÆóÒµ£¬Í¬Ò²ÌṩҩƷÉÏÊÐÔÊÐí³ÖÓÐÈË(MAH)·þÎñ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
ÓÀÀÖ¹ú¼Ê
¹ÉƱ´úÂëΪ£¨300404£©½¨ÉèÓÚ2002Ä꣬2015ÄêÔÚÉîÛÚ´´Òµ°åÉÏÊУ¬ÊÇÒ»¼ÒΪº£ÄÚÍâÒ½Ò©ÆóÒµÌṩҩƷ¡¢±£½¡Æ·¡¢Ò½ÁÆÆ÷еÑз¢ÓëÉú²úÈ«Á÷³Ì¡°Ò»Õ¾Ê½¡±Íâ°ü·þÎñ(CRO)µÄÐ͸ßÐÂÊÖÒÕÆóÒµ£¬Í¬Ò²ÌṩҩƷÉÏÊÐÔÊÐí³ÖÓÐÈË(MAH)·þÎñ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢¼¼
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢¼¼
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢¼¼
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢¼¼
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢¼¼
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢¼¼
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢¼¼
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢¼¼
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢ÊÖÒÕЧ¹ûת»¯µÈ£¬Í¬Ê±ÌṩҩƷÏòÃÀ¹ú¡¢Å·ÃË×¢²áÉ걨·þÎñ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢ÊÖÒÕЧ¹ûת»¯µÈ£¬Í¬Ê±ÌṩҩƷÏòÃÀ¹ú¡¢Å·ÃË×¢²áÉ걨·þÎñ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢ÊÖÒÕЧ¹ûת»¯µÈ£¬Í¬Ê±ÌṩҩƷÏòÃÀ¹ú¡¢Å·ÃË×¢²áÉ걨·þÎñ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢ÊÖÒÕЧ¹ûת»¯µÈ£¬Í¬Ê±ÌṩҩƷÏòÃÀ¹ú¡¢Å·ÃË×¢²áÉ걨·þÎñ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢ÊÖÒÕЧ¹ûת»¯µÈ£¬Í¬Ê±ÌṩҩƷÏòÃÀ¹ú¡¢Å·ÃË×¢²áÉ걨·þÎñ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢ÊÖÒÕЧ¹ûת»¯µÈ£¬Í¬Ê±ÌṩҩƷÏòÃÀ¹ú¡¢Å·ÃË×¢²áÉ걨·þÎñ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
Ò©Æ·Ñз¢¡°Ò»Õ¾Ê½¡±·þÎñ°üÀ¨£ºÐÂÒ©Á¢ÏîÑо¿ºÍ»îÐÔɸѡ¡¢Ò©Ñ§Ñо¿(º¬ÖÐÊÔÉú²ú)¡¢Ò©Àí¶¾ÀíÑо¿¡¢ÁÙ´²ÓÃÒ©ÓëÄ£Äâ¼ÁµÄÉú²ú¡¢ÁÙ´²ÊÔÑé¡¢ÁÙ´²Êý¾ÝÖÎÀíºÍͳ¼ÆÆÊÎö¡¢ÉÏÊкóÔÙÆÀ¼Û¡¢ÊÖÒÕЧ¹ûת»¯µÈ£¬Í¬Ê±ÌṩҩƷÏòÃÀ¹ú¡¢Å·ÃË×¢²áÉ걨·þÎñ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
ÓÀÀÖ¹ú¼Ê
¹«Ë¾ÓµÓнü3000ƽÃ×µÄÏÖ´ú»¯°ì¹«³¡ºÏ£¬»ã¾ÛÁ˳¬1000ÃûÂÄÀú¸»ºñ£¬Ñ§Ê¶Ô¨²©£¬Í·ÄÔѸËÙµÄÖи߼¶Ò½Ò©Ñо¿È˲źÍ×¢²á¹æÔòר¼Ò ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
ÓÀÀÖ¹ú¼Ê
ÓÀÀÖ¹ú¼ÊҽҩʼÖÕ¼á³Ö¡°ÖÒʵ¡¢ÊØÐÅ¡¢×¨Òµ¡¢È¨Íþ¡±µÄı»®ÀíÄ×èÖ¹2020Ä꣬¹«Ë¾ÀÛ¼ÆΪ¿Í»§ÌṩÁÙ´²Ñо¿·þÎñ800ÓàÏ»ù±¾º­¸ÇÁËÒ©ÎïÖÎÁƵĸ÷¸öרҵÁìÓò;ÀÛ¼ÆÍê³ÉÁÙ´²Ç°Ñо¿·þÎñ500¶àÏî ¡£¾­Óɽü¶þÊ®ÄêµÄÉú³¤£¬ÓÀÀÖ¹ú¼ÊÒ½Ò©ÔÚÊÖÒÕʵÁ¦¡¢·þÎñÖÊÁ¿¡¢·þÎñ¹æÄ£¡¢ÓªÒµÊÕÈë¡¢ÍŶӽ¨ÉèµÈ·½Ã涼ÒÑõÒÉíÎÒ¹úCRO¹«Ë¾µÄÁìÏÈλÖ㬳ÉΪÎÒ¹ú±¾ÍÁ´óÐÍCRO¹«Ë¾µÄÁúÍ·ÆóÒµ ¡£
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
¹«Ë¾ÐÂÎÅ
Ô¬À´ÔÆÔÆ£ü ´ó·Ö×ÓÉúÎïÆÊÎö¸ÅÂÛ£¨ËÄ_Ï£©£º LBAУ׼ÇúÏßÄâºÏÄ£×ÓºÍȨÖصÄÑ¡Ôñ ?
×÷Õߣº¹ãÖÝÓÀÀÖ¹ú¼ÊÒ½Ò© ʱ¼ä£º2021-03-23 ȪԴ£º¹ãÖÝÓÀÀÖ¹ú¼ÊÒ½Ò©

ÉÏÖÜ£¬¡°Ô¬À´ÔÆÔÆ¡±×¨À¸¾Í´ó·Ö×ÓÉúÎïÆÊÎöÒªÁìµÄУ׼ÇúÏßµÄÉè¼Æ¡¢ÌìÉúºÍ±à¼­µÄ˼Ë÷ºÍ½¨ÒéÕö¿ªÁËÏêϸÏÈÈÝ£¨Ô¬À´ÔÆÔÆ£ü´ó·Ö×ÓÉúÎïÆÊÎö¸ÅÂÛ£¨ËÄ_ÉÏ£©£ºÐ£×¼ÇúÏßµÄÉè¼Æ£¬ÌìÉúºÍ±à¼­£©£¬±¾ÆÚ½«ÑÓÐøÉÏÆÚÄÚÈÝ£¬ÖصãÏÈÈÝ´ó·Ö×ÓÉúÎïÆÊÎöÒªÁìУ׼ÇúÏßÄâºÏÄ£×ÓºÍȨÖؾÙÐÐÈ¡ÉáµÄÒªÁì ¡£


±¾ÏµÁÐÎÄÕÂÏÈÈݵÄÉúÎïÆÊÎöÊÇÖ¸¶¨Á¿µØ²â¶¨ÔÚ¶¯ÎïºÍÈËÌåÌåÒº»ò×éÖ¯ÖеÄÉúÎïÒ©£¨±¾ÎÄÌØÖ¸ÂÑ°×ÖÊÀàÉúÎïÒ©£¬°üÀ¨µ¥¿¹£¬Ï¸°ûÒò×Ó£¬Éú³¤ËØ£¬ÈÚºÏÂѰ׵ȣ©µÄŨ¶È ¡£´ó´ó¶¼ÉúÎïÆÊÎöÒªÁ춼»ùÓÚÃâÒß²âÊÔÒªÁ죨Immunoassays£©£¬»òÕ߸ü¹ãÒåµØ³ÆΪ£¬ÅäÌåÍŽáʽ²âÊÔÒªÁ죨ligand binding assays, LBA£© ¡£ÕâЩҪÁìÉ漰һϵÁÐÊÔ¼ÁµÄʹÓã¬È翹ҩÎÌ壬ÆäËü¿¹Ì壬ÉúÎïÒ©µÄ°Ð±êÂÑ°×µÈ ¡£

1.µ¼ÂÛ

ÅäÌåÍŽáʽ²âÊÔÒªÁ죨LBA£¬Ò²³ÆΪimmunoassays£©ÊÇÒ»ÖÖ³£ÓõĶ¨Á¿ÆÊÎö¹¤¾ß ¡£ÔÚLBAÒªÁìÖУ¬´ý²âÎïŨ¶ÈÓëÏìÓ¦Êý¾ÝÖ®¼äµÄ¹ØϵÊÇÖÊÁ¿×÷Óö¨ÂÉÇý¶¯µÄ·ÇÏßÐÔ¹Øϵ£¬Á½¸ö±»ÆÕ±é½ÓÊܺ;­ÓÉÑéÖ¤µÄLBAУ׼ÇúÏߵĻعéÄ£×ÓÊÇ4²ÎÊýlogistic£¨4PL£©ºÍ5²ÎÊýlogistic£¨5PL£©ÇúÏßÄâºÏÄ£×Ó ¡£Ñ¡ÔñÊʵ±µÄ»Ø¹éÄ£×ÓºÍȨÖغ¯ÊýÊÇLBAÒªÁ쿪·¢µÄÒªº¦×é³É²¿·Ö ¡£

ÔÚÆÊÎöÒªÁ쿪·¢Ê±´ú£¬Ó¦¶ÔÑ¡¶¨µÄÄ£×ÓºÍȨÖغ¯Êý¾ÙÐÐÆÀ¹À£¬²¢ÔÚÑé֤ʱ´ú¼ÓÒÔÈ·ÈÏ ¡£¹ØÓÚÈ·¶¨»òÑ¡ÔñÊʵ±µÄ»Ø¹éÄ£×ÓºÍȨÖغ¯ÊýµÄÏÖʵ²Ù×÷ÒªÁ죬ÔÚÒѽÒÏþµÄÎÄÏ×ÖÐÆÄΪÓÐÏÞ£¬±¾ÎĽ«Ìá³öÒ»¸ö½á¹¹»¯µÄ¡¢ÓÐÐòµÄ¼Æ»®À´È·¶¨Á½Õß ¡£

ÔÚLBAÖÐÊӲ쵽µÄʵÑéÏìÓ¦ÊÇÒ»¸öÅäÌ壨´ý²âÎºÍ¼ì²âϵͳÖÐʹÓõÄÌض¨²¶»ñ/¼ì²âÊÔ¼ÁµÄƽºâÍŽáµÄЧ¹û ¡£ÊµÑéÏìÓ¦Óë¶ÔÊý±ä»»ºóŨ¶ÈÖ®¼äµÄÕâÖÖ¹ØϵÊÇ·ÇÏßÐԵģ¬Ê¹µÃµä·¶µÄLBAУ׼ÇúÏßΪËùÓлò²¿·ÖµÄSÐÍ£¨sigmoidal£© ¡£³£¼ûµÄ·ÇÏßÐԻعéÄ£×ÓΪ4PLºÍ5PL£¬ÄâºÏÄ£×ÓµÄÑ¡Ôñ¿ÉÄÜÓÉÇúÏßµÄÐÎ×´ËùÇý¶¯ ¡£ÍêÈ«µÄ sigmoidalÇúÏߣ¨ÆäÖж¥²¿ºÍµ×²¿Æ½Ì¨ÇøÊǾµÏñ£©Í¨³£Ê¹ÓÃ4PL Ä£×Ó ¡£²¿·ÖsigmoidalÇúÏߣ¬¼´·Ç¶Ô³ÆÇúÏߣ¬Í¨³£Ê¹ÓÃ5PLÄ£×Ó£¨4PL¡¢5PLÄ£×ÓÏêϸ½â¶ÁÇë´Á¡¶Ô¬À´ÔÆÔÆ£ü´ó·Ö×ÓÉúÎïÆÊÎö¸ÅÂÛ£¨ËÄ_ÉÏ£©£ºÐ£×¼ÇúÏßµÄÉè¼Æ£¬ÌìÉúºÍ±à¼­¡·£© ¡£

ÓÉÓÚLBAÖÐÅäÌåƽºâÍŽᣨequilibrium binding£©µÄÌØÕ÷£¬¾­³£»áÊӲ쵽²âÊÔÏìÓ¦µÄ·Çºã¶¨µÄ·½²î£¨non-constant variance of response£©£¬ÕâÖÖ²»µÈͬ·½²î³ÆΪÒì·½²îÐÔ£¨heteroscedasticity£© ¡£ÈôÊÇÔÚÇúÏßÄâÊÊʱ²»Ë¼Á¿Ó¦¶ÔÒì·½²îÐÔ£¬Ôò¿ÉÄܵ¼ÖÂ×îÖÕЧ¹ûÖзºÆð»ØËã¹ýʧºÍ¸ü´óµÄÎó²î ¡£ÎªÁËïÔÌ­Òì·½²îÐÔµÄÓ°Ïì²¢Ìá¸ßÇúÏßÄâºÏµÄÖÊÁ¿£¬±ØÐèÖ»¹ÜïÔÌ­¾ßÓнϸ߷½²î£¨higher variance£©µÄУ׼µã¶ÔÇúÏßÄâºÏµÄТ˳£¬¹ãÒå×îСƽ·½ £¨generalized least squares£©ºÍ·½²îÎȹ̱任£¨variance stabilizing transformation£©¿ÉÒÔÓÃÀ´½â¾öÕâ¸öÎÊÌâ ¡£ÕâЩҪÁìҪôÔÚÿ¸öÄâºÏµü´úºó¸üÐÂȨÖغ¯Êý£»ÒªÃ´×ª»»Êý¾ÝºÍÄ£×Ó£¬ÒÔʹÓÃͨË××îСƽ·½Ä£×Ó£¬¶ø²»Ê¹ÓÃȨÖغ¯Êý ¡£ÔÚÒѽÒÏþµÄÒªÁìÖУ¬ÏßÐԻعéбÂÊÒªÁ죨linear regression slope approach£©¿ÉÄÜÊÇ×îÊÊÓÃµÄ ¡£±¾ÎÄÏÂÃæÌÖÂÛÕâ¸öÒªÁì ¡£

´ó´ó¶¼Óë LBA²âÊÔÏà¹ØµÄÈí¼þΪÖÖÖÖÄâºÏÄ£×Ӻͳ£ÓõÄȨÖغ¯Êý£¨Èç 1/Y »ò 1/Y2£©ÌṩÁËÄÚÖõÄÑ¡Ôñ ¡£Ïà¹Øî¿ÏµÖ¸ÄϽ¨ÒéʹÓÃ×î¼òÆÓ£¬²¢³ä·ÖÐÎòÁË´ý²âÎïŨ¶ÈÓëÆäÏìÓ¦Ö®¼ä¹ØϵµÄÄ£×Ó ¡£ÔÚÑ¡Ôñ»Ø¹éÄ£×Ó£¨¼Ó»ò²»¼ÓȨÖØ£©Ê±£¬ÈôÊǶÔÇúÏßÐÎ×´µÄÄ¿ÊÓÆÀ¹ÀºÍ¶ÔʹÓõÄͳ¼ÆÒªÁì¾ÙÐнÏÁ¿£¬Èç½ÏÁ¿F²âÊÔºÍchi-square p value£¬²¢½ûÖ¹Ò×£¬ÆäЧ¹û¿ÉÄÜ»áÁîÈËÒÉÐÄ ¡£ÕâÀï³£¼ûµÄÌôÕ½ÊÇÔõÑùÒÀ¾ÝÏà¹Ø֪ʶ£¬ºÏÀíµØÑ¡ÔñÆäÖÐÖ®Ò» ¡£

±¾ÎĽ«ÏÈÈÝÒ»×é°¸ÀýÑо¿£¬ÆäÖнÓÄÉÒ©´ú¶¯Á¦Ñ§¶¨Á¿ÆÊÎöÒªÁ죬ÓÃÓÚѪÇå»òѪ½¬ÖÐÂÑ°×ÉúÎïÒ©µÄ¶¨Á¿£¬ÒÔ¼°Ê¹ÓÃͨÓõÄͳ¼ÆÈí¼þÀ´È·¶¨Êʵ±µÄÄâºÏÄ£×ÓºÍȨÖØÒò×Ó ¡£

2.¶¨Á¿ÆÊÎöÊý¾ÝµÄ±¬·¢

LBAÒªÁìÊÇÆÀ¹ÀÉúÎïÒ©µÄPK/TKʱµÄÖ÷Òª¶¨Á¿ÆÊÎöÒªÁ죬¸ÃÒªÁìµÄÌØÒìÐÔºÍÑ¡ÔñÐÔÈ¡¾öÓÚÄ¿µÄ´ý²âÎïÓëÆäËûÉúÎï·Ö×Ó£¨ÈçÊÜÌå¡¢ºÍÕë¶ÔºòÑ¡ÉúÎïÒ©µÄ¿¹Ì壩µÄÏ໥×÷Óà ¡£LBAÒªÁìÖÐÊӲ쵽µÄÐźÅ/ÏìÓ¦ÓëÉúÎïÒ©µÄŨ¶È¼ä½ÓÏà¹Ø ¡£

ÏÂÃæµÄʾÀýA¡¢BºÍC¶¼Ê¹ÓÃÁËLBAÒªÁ죬Èçµç»¯Ñ§·¢¹â£¨ECL£©¼ì²âƽ̨»ò±ÈÉ«·¨ELISA¼ì²âƽ̨£¬ÓÃÓÚ¶¨Á¿ÆÊÎöѪ½¬»òѪÇ壨ÈË»òʳзºï£©ÖеÄÂÑ°×ÉúÎïҩŨ¶È ¡£Ã¿¸ö°¸ÀýÑо¿ÖеÄÆÊÎöÒªÁì¼òÊöÈçÏ£º

°¸ÀýA£º¶ÔMeso Scale Discovery£¨MSD£©Multi-Array?΢¿×°å£¬Ê¹Óõ¥¿Ë¡¿¹Ò©ÎÌ壨5 ?g/mL£©°ü°å£¬×¡ËÞ£»Ö®ºó£¬Ó뺬ÓÐÒ©ÎïµÄÑùÆ·ÔÚÊÒÎÂÏ·õÓý60·ÖÖÓ£»Ï´°åºó£¬ÍŽᵽ°åÉϵÄÒ©ÎïÓëbiotinylatedµ¥¿Ë¡¼ì²â¿¹Ì壨2.5??g/mL£©·õÓý60·ÖÖÓ£»È»ºó¼ÓÈë0.1??g/mL µÄStreptavidin-ruthenium£¬ÔÙ·õÓý60·ÖÖÓ£»Ö®ºó£¬MSDÒÇÆ÷ÔÚÌض¨Ìõ¼þϼì²âµ½À´×Ôruthenium µÄµç»¯Ñ§·¢¹âÐźŠ¡£

°¸ÀýB£º¶Ôstreptavidin °ü±»µÄMSD Multi-Array?΢¿×°å£¬ÔÚÊÒÎÂÏ£¬ÒÔbiotinylatedµ¥¿Ë¡¿¹Ì壨4mg/mL£©°ü°å60ÖÁ120·ÖÖÓ£»Ëæºó£¬º¬ÓÐÒ©ÎïµÄÑùÆ·ÔÚÉÏÊö΢¿×°åÉÏ·õÓý90·ÖÖÓ£»Ê¹ÓÃСÊó¿¹ÈËIgG Fc-Ruthenium£¨0.36mg/mL£©·õÓý60·ÖÖÓ£¬ÒÔÍŽᱻ¿¹Ì岶»ñµÄÉúÎïÒ©£»Ö®ºó£¬MSDÒÇÆ÷ÔÚÌض¨Ìõ¼þϼì²âµ½À´×Ôruthenium µÄµç»¯Ñ§·¢¹âÐźŠ¡£

°¸ÀýC£ºÔÚCostar΢¿×°åÉÏ£¬ÔÚ4¡ãC°ü±»Ò©Îï°Ðµã£¨4 mg/mL£©£¬×¡ËÞ£»Óë°ÐµãÍŽáºóµÄÉúÎïÒ©£¬ÔÙÓë50 ng/mLµÄbiotinylatedµ¥¿Ë¡¿¹Ìå·õÓý60·ÖÖÓ£»Ö®ºó£¬ÔÙÓë1:50,000Ï¡ÊͺóµÄavidin D-HRP ·õÓý60·ÖÖÓ£»Ëæºó£¬¼ÓÈëHRPøµ×ÎTMB£¬ÒÔ±¬·¢É«¶È·´Ó¦£»È»ºóÓÃÁòËá×èÖ¹¸Ã·´Ó¦£¬²¢ÔÚø±êÒÇSpectramaxÉÏ£¬ÕÉÁ¿450nmµÄ¹âѧÃܶȣ¨OD£© ¡£

3.Êý¾ÝÆÊÎöµÄÀú³Ì

Òì·½²îÐÔ£¨Heteroscedasticity£©

ÔÚÊÕÂÞµ½µÄʵÑéÔËÐеıê׼У׼Êý¾ÝÜöÝÍ£¨standard calibration data£©ÖУ¬¿ÉÒÔͨ¹ýÊÓ²ì²âÊÔÐźŵıê×¼Îó²î£¨SD£©ºÍУ׼µãŨ¶ÈÖ®¼äµÄ¹ØϵÀ´ÆÀ¹ÀÒì·½²îÐÔ ¡£Îª´Ë£¬»®·ÖÆÀ¹ÀÁË°¸ÀýA¡¢BºÍCÔÚÒªÁ쿪·¢Àú³ÌÖлñµÃµÄ6¡¢7ºÍ10¸ö×ÔÁ¦ÔËÐÐ ¡£

Ê×ÏÈ£¬Ê¹ÓÃMicrosoft Excel 2010ÅÌËã±ê×¼·½²î£¬Æä´ÎʹÓà GraphPad Prizm 7 À´»æÖÆÿ¸öУ׼Ʒ²âÊÔÐźŵÄSDÓëУ׼µãŨ¶ÈµÄ¹Øϵͼ ¡£ÔÚÄ¿ÊÓ¿¼²ìÁËSDת±äµÄÇ÷Êƺ󣬾ͿÉÒÔÈ·¶¨¶ÔȨÖغ¯ÊýµÄÐèÇó ¡£ÈôÊÇSD±¬·¢Òƶ¯£¬ÔòÅú×¢ÎúÒì·½²îÐÔ£¬Òò´Ë£¬ÐèҪʹÓÃȨÖغ¯Êý ¡£ÈôÊÇSDÔÚУ׼ƷŨ¶È¹æÄ£ÄÚÊǺ㶨µÄ£¬ÔòÎÞÐè¼ÓȨ ¡£

È·¶¨È¨Öغ¯Êý

µ±ÔÚУ׼ÇúÏßÖÐÊӲ쵽²âÊÔÐźŵıê×¼Îó²îËæŨ¶È±¬·¢×ª±äʱ£¬¾ÍÐèÒª¶Ô¸ü׼ȷµÄÊý¾Ýµã£¨¾ßÓнϵÍSDµÄÊý¾Ý£©Ê¹ÓÃȨÖغ¯ÊýÀ´µ÷½âÇúÏßµÄÄâºÏ ¡£ÔÚ GraphPad Prizm 7 ÖУ¬¿ÉÒÔʹÓÃͼÐÎÏßÐԻعéÒªÁ죨graphical linear regression approach£©ÅÌËãȨÖغ¯ÊýÒò×ÓÈçÏ£º

°ì·¨1. »æÖÆÏÂÊö¶þÕߵĹØϵͼ£º¶ÔÊýת»»ºóµÄ²âÊÔÐźÅƽ¾ùÖµÓë¶ÔÊýת»»ºóµÄSD£¬¶Ô¶þÕßʹÓÃÏàͬµÄ¶ÔÊýµ×Êý£¨10»ò2£© ¡£

°ì·¨2. ÔÚ°ì·¨1ÖлñµÃµÄÏßÐԻعéÖ±ÏßµÄбÂÊÖµ£¨k£©³ËÒÔ2£¬ÒÔÈ·¶¨È¨Öغ¯ÊýÒò×Ó£¨weighting function factor£©£¬¼´2k ¡£

ΪÁËƽºâËùÓÐУ׼µãµÄТ˳£¬ÔÚ4PL»ò5PLÇúÏßÄâºÏÖÐÓ¦ÓÃȨÖغ¯Êý 1/Y2k£¨ÆäÖÐYÊDzâÊÔÐźÅ£¬2kÊÇȨÖØÒò×Ó£©£¬ÒÔÖ»¹ÜïÔÌ­weighted sum-of-squares£¬´Ó¶ø»ñµÃ¸üºÃµÄ׼ȷ¶ÈºÍϸÃÜ¶È ¡£

È·¶¨ÇúÏßÄâºÏÄ£×Ó

½«È¨Öغ¯Êý 1/Y2k Ó¦ÓÃÓÚÇúÏßÄâºÏÄ£×Ó £¨4PL »ò 5PL£©ºó£¬ÔÙʹÓÃWatson LIMS£¬½«»ØËãµÄУ׼µãŨ¶È²åÈë¼ÓȨÄâºÏµÄÇúÏߣ¨¼Ù¶¨ÕâЩУ׼µãÊÇδ֪Ũ¶ÈµÄÑù±¾£© ¡£

ÈôÊǶÔËùÓвâÊÔÔËÐкͶÔÿ¸ö±ê׼У׼µã£¨Ãª¶¨µã³ýÍ⣩£¬ÀÛ»ý%REÔÚ¡À15% Ö®ÄÚ²¢ÇÒÀÛ»ý%CV¡Ü15%£¬Ôò»Ø¹éÄ£×ÓÊÇ¿ÉÒÔ½ÓÊܵÄ£»µ«¹ØÓÚ¶¨Á¿ÏÂÏÞ£¨LLOQ£©ºÍÉÏÏÞ£¨ULOQ£©£¬½ÓÊܱê×¼Ò»Ñùƽ³£ %RE¡À20ºÍÀÛ»ý %CV¡Ü20 ¡£Ô¤¼ÆµÄ¶¨Á¿¹æÄ££¨ROQ£©ÊÇÔÚÇкÏÉÏÊö½ÓÊܱê×¼µÄ×îµÍºÍ×î¸ß±ê׼Ũ¶ÈÖ®¼äÈ·¶¨µÄ ¡£ÔÚ MS  Excel 2010 ÖУ¬ÀÛ¼Æ%REºÍÀÛ»ý%CV »®·ÖÅÌËãΪ£º[100 - 100 x£¨»ØËãŨ¶ÈµÄƽ¾ùÖµ/±ê³ÆŨ¶È£©]ºÍ 100 X£¨»ØËãŨ¶ÈµÄ±ê×¼·½²î/»ØËãŨ¶ÈµÄƽ¾ùÖµ£© ¡£

Ö®ºó£¬Ê¹Óà GraphPad Prizm 7 »æÖÆ 4PL ºÍ 5PL Ö®¼ä׼ȷ¶È£¨ÀÛ»ýcumulative %RE£©ºÍϸÃܶȣ¨ÀÛ»ýcumulative %CV£©µÄ½ÏÁ¿Í¼ ¡£»Ø¹éÄ£×ÓµÄÏàÒËÐÔ¿ÉʹÓô˿ÉÊÓ»¯Í¼Ðι¤¾ßÀ´ÅжϣºÔڿɽÓÊܵĹæÄ£ÄÚ°üÀ¨Á˸ü¶à±ê׼У׼µã£¬²¢ÇÒÀÛ»ý %RE ºÍÀÛ»ý %CV ½ÏµÍÄ£×Ó£¬¾ÍÊÇÓ¦¸ÃÑ¡ÔñµÄÄ£×Ó ¡£ÈôÊÇÁ½ÖÖÄ£×ÓµÄЧÄܺÜÊÇÏàËÆ£¬Ôò¿Éͨ¹ýÊÇ·ñ¾ßÓмÓȨ4PLÀ´×öÑ¡Ôñ £¬ÓÉÓÚÒ»Ñùƽ³£×ñÕÕ Occam¡¯s razor Ô­Ôò£¬ ¼´ÒÔ×îÉٵļÙÉ裬·¢Ã÷Êý¾ÝºÍÄ£×ÓÖ®¼äµÄ¹Øϵ ¡£

ͼ1. Ñ¡ÔñÇúÏßÄâºÏÄ£×ÓÒÔÌá¸ßÇúÏßÐÔÄܵÄÒªÁì ¡£ÏÖʵÊÂÇéÁ÷³ÌÐÎòÁËÑ¡ÔñȨÖغ¯ÊýºÍÇúÏßÄâºÏÄ£×ÓµÄÿ¸ö°ì·¨ºÍÕû¸öÀú³Ì ¡£





4.Ч¹û

±¾ÎÄÌá³öÁËÒ»Öֽṹ»¯µÄÒªÁ죬ͨ¹ýÑ¡Ôñ׼ȷµÄÇúÏßÄâºÏÄ£×ÓºÍȨÖغ¯Êý£¬ÒÔÀ©Õ¹ LBAÆÊÎöÒªÁìµÄ¶¨Á¿¹æÄ££¨Í¼1£© ¡£¸ÃÒªÁìÍêÈ«´ÓÊýѧµÄ½Ç¶È³ö·¢£¬È·¶¨Ò»ÌõУ׼ÇúÏßÊÇ·ñÐèÒª¼ÓȨÖØÒÔ¼°ÄÄÖÖ¼ÓȨ·½·¨×îºÏÀí ¡£ÈôÊÇÍøÂçµ½µÄÊý¾ÝÖзºÆð³öµÄÒìÖÊÐÔ£¬ÔòÔÚ׼ȷ¶ÈºÍϸÃܶÈÐÐΪ·½Ã棬¶Ô4PLºÍ5PLÁ½¸öÄ£×Ó£¨ÒÔ¼°È·¶¨µÄȨÖغ¯Êý£©¾ÙÐнÏÁ¿£»ÈôÊÇδÊӲ쵽Òì·½²îÐÔ£¬Ôò¶Ô²»º¬È¨ÖØÁ¿4PLºÍ5PLÄ£×Ó¾ÙÐнÏÁ¿ ¡£ÒÔϽ«´ËÔ­ÔòÓ¦ÓÃÓÚ3¸öµä·¶ LBAÆÊÎö°¸Àý ¡£ÔÚÕâ3¸öÉúÎïÒ©µÄÒ©´ú¶¯Á¦Ñ§£¨PK£©Ñо¿°¸ÀýÖУ¬×ܹ²¿ª·¢ÁË3¸öÆÊÎöÒªÁ죬²¢ÊӲ쵽3ÖÖ²î±ðÐÎ×´µÄУ׼ÇúÏß ¡£ÆäÖУ¬Á½¸öÆÊÎöÒªÁ죨°¸ÀýAºÍB£©Ê¹ÓÃÁ˵绯ѧ·¢¹â£¨ECL£©Æ½Ì¨£¬¶øÁíÒ»¸öÆÊÎöÒªÁ죨°¸ÀýC£©Ê¹ÓÃÁ˱ÈÉ«ELISAƽ̨ ¡£

PKÆÊÎöµÄ3ÌõУ׼ÇúÏß

ΪÁËÔÚÒªÁ쿪·¢Àú³ÌÖжÔŨ¶È-²âÊÔÐźŵĹØϵ¾ÙÐÐÏêϸÑо¿£¬±í1ÖÐÐÎòÁ˶¨Á¿ÆÊÎöÉúÎïÒ©A¡¢BºÍCŨ¶ÈµÄ3ÌõУ׼ÇúÏß ¡£ÔÚÔ¤ÆڵĶ¨Á¿¹æÄ£ÄÚ£¨¶ÔÊý±ê×¼ÉÏ£©£¬Ð£×¼µã´óÖÂÔȳÆÂþÑÜ ¡£

±í1. 3ÌõPKУ׼ÇúÏßµÄÌØÕ÷×ܽá

ÓÃÓÚÆÀ¹À¸÷×ÔPKÆÊÎöÔËÐеÄУ׼ÇúÏßÊý¾ÝÈçͼ2Ëùʾ ¡£ÔÚËùÓÐ3¸ö°¸ÀýÑо¿Öж¼ÊӲ쵽Á˵䷶µÄ·ÇÏßÐÔµÄŨ¶È-ÏìÓ¦ÇúÏß ¡£

ͼ2. 3¸ö°¸ÀýÑо¿ÖеÄУ׼ÇúÏߣº°¸Àý A£¨a£©£¬°¸Àý B£¨b£© ºÍ°¸Àý C£¨c£© ¡£¸ÃͼչʾÁË3Ìõ±ê×¼ÇúÏßµÄÐÎ×´£¬´ú±íÁËÔÚLBA²âÊÔÖÐͨ³£ÊӲ쵽µÄµä·¶·ÇÏßÐÔÏìÓ¦ ¡£XÖá´ú±íУ׼µãŨ¶ÈµÄ¶ÔÊý£¬YÖá´ú±íÏìÓ¦¶ÁÊý£º°¸ÀýAºÍBÊÇÏà¶Ô¹âµ¥Î»£¨RLU£©£¬°¸ÀýCÊÇ450 nM ¹âѧÃܶȣ¨OD 450£© ¡£



ͼ3. °¸ÀýA£¨a£©¡¢°¸ÀýB£¨b£©ºÍ°¸ÀýC£¨c£©µÄÒì·½²îÐԸſö ¡£XÖá´ú±íУ׼µãŨ¶ÈµÄ¶ÔÊý£¬YÖá´ú±íʵÑéÔËÐÐÖвâÊÔÐźŵÄSD ¡£





Òì·½²îÐÔÆÀ¹À

ÏÂÃæÆÀ¹ÀÁ˱í1ÖÐ3ÌõУ׼ÇúÏßÉϲâÊÔÐźŵıê×¼Îó²î£¨SD£©£¬¸ÃSDÊÇÒì·½²îÐÔµÄÖ±½ÓÖ¸±ê ¡£Õâ3ÌõУ׼ÇúÏßÉϲâÊÔÐźŵÄSD£¨±äÒìÐÔvariability£©²»ÊǺ㶨µÄ£¬¶øÊÇËæ×ÅУ׼µãµÄŨ¶È¶ø¸Äת±äµÄ£¨Í¼3£© ¡£

¹ØÓÚ°¸ÀýA£¬µ±Ò©ÎïŨ¶ÈÁè¼Ý 20 ng/mLʱ£¬Æä±äÒìÐÔ¼±¾çÔöÌí ¡£ÔÚ°¸ÀýBÖУ¬SD´ó·ùÔöÌí£¬Ö±µ½48.3 ng/mLµÄŨ¶È£¬²¢ÔÚ 48.3ºÍ 250 ng/mL Ö®¼ä·ºÆðϽµÇ÷ÊÆ ¡£¹ØÓÚ°¸ÀýC £¬SD ÔöÌí£¬Ò»Ö±µ½23.5 ng/mLµÄŨ¶È£¬Ö®ºóÉÔ΢½µ£¬Ö±ÖÁ79.3 ng/mL ¡£×ÜÌå¶øÑÔ£¬Å¨¶È½Ï¸ßУ׼µãµÄSD´óÓÚŨ¶È½ÏµÍУ׼µã ¡£Ð£×¼ÇúÏßÖ®¼äµÄ·Çºã¶¨ SD ģʽ´úÌåÏÖÒì·½²îÐÔ£¬ÔڽϸßŨ¶Èϵĸ߱äÒìÐÔÅú×¢ÐèҪʹÓüÓȨÄâºÏ ¡£Í¼1ËùʾµÄ¾öÒéÊ÷Ö¸Ã÷ÎúÔõÑùÈ·¶¨Êʵ±µÄȨÖØÒò×ӺͿÉÒÔ½ÓÊܵÄÄâºÏÄ£×Ó ¡£

È·¶¨È¨Öغ¯Êý

ΪÁËÈ·¶¨È¨ÖØÒò×Ó£¬Ê×ÏÈÐèÒª´ÓÏÂÃæµÄÏßÐԻعéÖеóöбÂÊ£¨kÖµ£©£º¶ÔÊý±ä»»µÄ²âÊÔÐźÅSD vs ¶ÔÊý±äµÄ»»²âÊÔÐźÅƽ¾ùÖµ£¨Í¼4£©£»È»ºó£¬Ó¦Óà 1/Y2k ·½³ÌʽÀ´ÅÌËã×îÖÕµÄȨÖغ¯Êý ¡£¹ØÓÚ°¸Àý A£¬B ºÍ C£¬ÏßÐԻعéµÄбÂÊ»®·ÖΪ 1.06¡¢1.00 ºÍ 0.657 ¡£¹ØÓÚ°¸Àý A ºÍ B£¬ÓÉÓÚбÂÊ¿¿½ü1.0£¬Òò´ËÔÚ4PLºÍ5PLÄ£×ÓÖÐʹÓÃÁËȨÖغ¯Êý1/Y2 ¡£¹ØÓÚ C Àý£¬È¨Öغ¯ÊýΪ 1/Y£¬ÓÉÓÚбÂÊ¿¿½ü 0.5 ¡£ÔÚWaston LIMSÖУ¬Ö»ÓÐ 1/Y or 1/Y2ÕâÁ½ÖÖȨÖغ¯Êý¿ÉÓà ¡£

ͼ4. °¸Àý A£¨a£©¡¢°¸Àý B £¨b£© ºÍ°¸Àý C £¨c£©ÖÐkÖµ¼òÖ±¶¨ ¡£°¸Àý A¡¢B ºÍ C µÄбÂÊ£¨kÖµ£©»®·ÖΪ 1.06¡¢1.00 ºÍ 0.657 ¡£°¸ÀýA¡¢BºÍCµÄR2£¨È·¶¨ÏµÊýcoefficient of determination£©»®·ÖΪ0.998¡¢0.984ºÍ0.934 ¡£





È·¶¨ÇúÏßÄâºÏÄ£×Ó

Ϊȷ¶¨¿ÉÒÔ½ÓÊܵÄÇúÏßÄâºÏÄ£×Ó£¬¿¼²ìÁËÈçϲÎÊý£º4PLºÍ 5PLÄ£×Ó£»È¨Öغ¯Êý£º1/Y2£¨°¸ÀýA£©£¬1/Y2£¨°¸ÀýB£©ºÍ 1/Y£¨°¸ÀýC£©£»½ÏÁ¿²ÎÊý£º»ØËãŨ¶ÈµÄÀÛ»ý %RE£¨Í¼5£©ºÍÀÛ»ý %CV£¨Í¼6£© ¡£Ó¦ÖÐÑ¡ÔñÔڿɽÓÊܵĹæÄ£ÄÚ£¬¾ßÓнϵ͵Ä%CVºÍ%REУ׼µãÊýÄ¿½Ï¶àµÄ»Ø¹éÄ£×Ó ¡£ÈôÊÇÁ½Õ߶¼ÊÇÏ൱µÄ£¬ÔòӦѡȡ¼ÓȨ4PL×÷Ϊ×îÖÕµÄÇúÏßÄâºÏÄ£×Ó ¡£ÔÚ Watson LIMS ÖÐÌìÉúÿ´ÎÔËÐеĻØËãŨ¶È ¡£ËùÓÐÇéÐεĻØËãŨ¶ÈµÄÀÛ»ý %REºÍ %CVÅÌË㣨ÔÚÇúÏßÄâºÏÄ£×ÓÈ·¶¨ÕÂ½ÚµÄ B ²¿·Ö£© ¡£Í¼5ºÍͼ6¸ø³öÁ˼ÓȨ4PLÄ£×ÓÓë¼ÓȨ5PLÄ£×ÓµÄÀÛ»ý %REºÍÀÛ»ý %CVµÄ½ÏÁ¿ ¡£

Èçͼ5Ëùʾ£¬¹ØÓÚ¾ßÓÐÏìӦȨÖغ¯ÊýµÄ4PLºÍ5PLÄ£×Ó£¬ËùÓÐУ׼µãµÄ %RE»®·Ö£º°¸ÀýA£¬ µÍÓÚ4%ºÍ3%£»°¸Àý B£¬µÍÓÚ18%ºÍ16%£»°¸Àý C£¬µÍÓÚ7 ºÍ 6% ¡£ÔÚËùÓа¸ÀýÑо¿ÖУ¬¼ÓȨ4PLºÍ¼ÓȨ5PLÄ£×ÓµÄ׼ȷ¶ÈÊÇÏ൱µÄ£¬¹ØÓÚ°¸Àý A¡¢B ºÍ C£¬ËùÓÐУ׼µã¶¼ÔÚ¿ÉÒÔ½ÓÊܵĹæÄ£ÄÚ ¡£Æ¾Ö¤×¼È·¶ÈÐÐΪͼÍƶϵĶ¨Á¿¹æÄ££¨ROQ£©»®·ÖΪ£º0.317-178 ng/mL£¨°¸ÀýA£©£¬0.602-250 ng/mL£¨°¸ÀýB£©£¬ºÍ1.37-79.3 ng/mL£¨°¸ÀýC£© ¡£

ͼ5. ׼ȷ¶ÈÐÐΪͼ ¡£¶Ô°¸ÀýA£¨a£©¡¢°¸ÀýB£¨b£©ºÍ°¸ÀýC£¨c£©ÖÐУ׼ÇúÏߵļÓȨ£¨1/Y»òÕß1/Y2£©ÄâºÏÄ£×Ó¾ÙÐÐÁ˽ÏÁ¿ ¡£½ÏÁ¿Ä£×Ó£º4PL vs 5PL£»½ÏÁ¿²ÎÊý£º»ØËãŨ¶ÈµÄÀÛ»ýÏà¶ÔÎó²î£¨%RE£© ¡£Á½ÌõÐéÏßÖ®¼äµÄÇøÓòÊǿɽÓÊܹæÄ££¨¡À 20%£© ¡££¨¡ð£©´ú±í4PL¼ÓȨÄâºÏ£¬£¨¡õ£©´ú±í5PL¼ÓȨÄâºÏ ¡£



ͼ6ÏÔʾ£¬¹ØÓÚ¼ÓȨ4PLºÍ¼ÓȨ5PLÇúÏßÄâºÏÄ£×Ó£¬ËùÓÐУ׼µãµÄÀÛ¼Æ%CV£º°¸ÀýA£¬µÍÓÚ3.0ºÍ2.9%£»°¸ÀýB£¬µÍÓÚ39.7%ºÍ26.3%£»°¸ÀýC£¬µÍÓÚ6.6%ºÍ10.8% ¡£°¸ÀýAºÍC¶ÔÁ½¸öÄâºÏÄ£×Ó¼ÓȨÄâºÏºó£¬ËùÓÐУ׼µãµÄ %CV±äµÃÏ൱ÁË ¡£¶Ô°¸ÀýAºÍC£¬ËùÓÐУ׼µãµÄ¼ÓȨ4PLºÍ¼ÓȨ5PLµÄϸÃܶÈÒ²ÊÇÏàËÆµÄ ¡£Æ¾Ö¤Ï¸ÃܶÈÐÐΪͼÍƶϵÄROQ»®·ÖΪ0.317-178 ng/mL£¨°¸ÀýA£©ºÍ1.37-79.3 ng/mL£¨°¸ÀýC£© ¡£Ê¹ÓüÓȨ4PLÄ£×Ó£¬Óë¼ÓȨ5PLÄ£×ÓÏà±È£¬°¸ÀýB¿ÉÒÔ½ÓÊܵÄУ׼µãÊýÄ¿´Ó9ÔöÌíµ½11£¬¼ÓȨ4PLÄ£×ӵĹÀËãµÄROQ Ϊ 0.602-145 ng/mL£¬¶ø¼ÓȨ5PLÄ£×ӵļì²â¹æÄ£½ÏÕ­£º0.602 - 48.3 ng/mL ¡£Æ¾Ö¤½ÓÊܱê×¼£¬¹ØÓÚ°¸Àý A¡¢B ºÍ C £¬×îÖÕ¿ÉÒÔ½ÓÊܵÄÇúÏßÄâºÏÄ£×Ó¶¼ÊÇ4PL£¬È¨Öغ¯Êý»®·ÖΪ 1/Y2£¬1/Y2ºÍ1/Y ¡£

ͼ6. ϸÃܶÈÐÐΪͼ£º°¸ÀýA£¨a£©£¬°¸ÀýB£¨b£©ºÍ°¸ÀýC£¨c£©½ÏÁ¿Ä£×Ó£º¼ÓȨ4PL vs ¼ÓȨ5PL£»½ÏÁ¿²ÎÊý£º»ØËãŨ¶ÈµÄ %CV ¡£ÐéÏߺÍXÖáÖ®¼äµÄÇøÓòÊǿɽÓÊܹæÄ££¨¡À 20%£© ¡££¨¡ð£©´ú±í 4PL ¼ÓȨÄâºÏ£¬£¨¡õ£©´ú±í 5PL ¼ÓȨÄâºÏ ¡£



ʹÓÃÉÏÊö¼Æ»®ºó£¬Ð£×¼ÇúÏßÐÔÄܵÄË¢ÐÂ

ͼ7ÑÝʾÁ˶԰¸Àý A Ó¦ÓÃÉÏÊö¼Æ»®ºó£¬Ð£×¼ÇúÏßÐÔÄÜÊÇÔõÑùˢеģ¨´Ë´¦²»ÏÔʾ°¸ÀýBºÍCµÄͼ±í£© ¡£Ê¹Ó÷ǼÓȨ4PL»Ø¹éÄ£×Ó»ØËãŨ¶È»æÖƵÄ׼ȷ¶ÈÐÐΪͼ£¨ÀÛ»ý %RE£¬Í¼7a£©Åú×¢£¬Óë¼ÓȨÏà±È´ËÄ£×ÓÌåÏÖ³ö¸üÕ­µÄ¶¯Ì¬¹æÄ££¬0.563-178 ng/mL£»¼ÓȨ4PLÄ£×Ó£º0.317-178 ng/mL ¡£·Ç¼ÓȨ 5PL»Ø¹éÄ£×ÓÏÔʾ¸üºÃµÄ׼ȷ¶È£ºËùÓÐУ׼µãµÍÓÚ20% ¡£¿ÉÊÇ£¬ÔÚÓ¦ÓÃ1/Y2µÄȨÖغ¯Êý£¨ÔÚ¡°Òì·½²î¶ÈÆÀ¹À¡±Õ½ÚÈ·¶¨£©ºó£¬ ËùÓÐУ׼µãµÄÀÛ»ý %RE»ñµÃ¸ÄÉÆ£¬¶¼ÔÚ¡À3%ÒÔÄÚ£¨Í¼7a£© ¡£

ϸÃܶÈÐÐΪͼ£¨ÀÛ»ý %CV£¬Í¼7b£©ÏÔʾ£¬·Ç¼ÓȨ4PLºÍ5PL»Ø¹éÄ£×ÓµÄROQÏÔÖøÏÁÕ­£º1.00-178 ng/mL£»¶øÔÚʹÓÃÁË1/Y2 µÄȨÖغ¯Êýºó£¬ROQ±äΪ0.317-178 ng/mL ¡£¸ÃУ׼ÇúÏߵͶ˵ÄЧÄܵÄÏÔÖø¸ÄÉÆÏÔʾÁ˼ÓȨÄâºÏµÄʵÁ¦£¬ÒòÆä½µµÍÁ˸߱äÒìÐԵIJâÊÔÐźŶÔÇúÏßÄâºÏµÄÓ°Ïì ¡£°¸ÀýAÅú×¢£¬Ê¹ÓÃÊʵ±µÄȨÖغ¯Êý¿ÉÒÔÌá¸ßϸÃܶȺÍ׼ȷ¶È£¨¾ùµÍÓÚ4%£©ÒÔ¼°À©Õ¹¶¨Á¿¹æÄ££¨0.317-178 ng/mL£© ¡£

ͼ7. °¸ÀýA±ê×¼ÇúÏß¼ÓȨ֮ǰºÍÖ®ºó£¬4PLºÍ5PLÄ£×ÓµÄ׼ȷ¶ÈºÍϸÃܶÈÐÐΪͼ ¡£ÀÛ»ý %RE£¨Í¼ 7a£©ºÍÀÛ¼Æ %CV£¨Í¼7b£©ÔÚÄ£×ÓÖ®¼äµÄ½ÏÁ¿£º4PL vs. 5PL£¨ÎÞȨÖØ£©£»ÒÔ¼°4PL vs. 5PL£¨È¨ÖØÒò×Ó£º1/Y2£© ¡£


±í2ÏÔʾ£¬Ê¹ÓÃÊʵ±µÄȨÖغ¯Êý¿ÉÒÔÀ©Õ¹ROQ ¡£¶Ô°¸ÀýB£¬Ó¦ÓÃȨÖغ¯Êýµ½4PL»Ø¹éÄ£×Óºó£¬ROQ»ñµÃÏÔÖøÀ©Õ¹£»´Óδ¼ÓȨµÄ1.04-48.3 ng/mLµ½ ¼ÓȨµÄ0.602-145 ng/mL£»¼ÓȨ5PLÄ£×ÓµÄROQ£¬Ôò´Óδ¼ÓȨ1.04-145 ng/mL±äΪ¼ÓȨµÄ0.602-48.3 ng/mL ¡£¶Ô°¸ÀýC£¬4PLÄ£×ÓµÄROQÂÔÓÐÀ©Õ¹£º´Óδ¼ÓȨµÄ2.06-79.3 ng/mL£¬µ½¼ÓȨµÄ1.37-79.3 ng/mL ¡£¹ØÓÚ5PLÄ£×Ó£¬Ê¹ÓÃȨÖغ¯ÊýºóROQûÓÐÔöÌí ¡£

±í2. ¶¨Á¿¹æÄ££¨ng/mL£©

5.ÌÖÂۺͽáÂÛ

±¾ÎÄΪȷ¶¨LBA¶¨Á¿ÆÊÎöÒªÁìÖÐУ׼ÇúÏߵĻعéÄ£×Ó¼°È¨Öغ¯ÊýµÄÑ¡Ôñ£¬ÌṩÁËÒ»¸ö¾öÒéÊ÷ºÍÏìÓ¦µÄÒªÁ죬ĿµÄÊÇΪÁËΪïÔÌ­Òì·½²îÐÔ£¨heteroscedasticity£©µÄÓ°Ïì ¡£±¾ÎĵĽ¨Òé»ñµÃ3¸ö°¸ÀýÑо¿µÄÖ§³Ö ¡£

ÓÉÓÚLBAÖÐƽºâÍŽᣨequilibrium binding£©µÄÌØÕ÷£¬Êµ¼ùÖо­³£ÊӲ쵽²âÊÔÏìÓ¦µÄ·Çºã¶¨·½²î£¬³ÆΪÒì·½²îÐÔ£¨heteroscedasticity£© ¡£±¾ÎÄ·¢Ã÷ÏßÐԻعéбÂÊÒªÁ죨linear regression slope approach£©Êǽâ¾öÒì·½²îÐÔ×îÏÖʵµÄÒªÁì ¡£

ÔÚÒªÁ쿪·¢Àú³ÌÖУ¬¿ÉÒÔ»æÖÆУ׼ÇúÏߵIJâÊÔÐźŵıê×¼·½²î£¨standard deviation£¬SD£©ÓëУ׼µãŨ¶ÈµÄ¶ÔÊýµÄÏà¹Øͼ ¡£Ò»ÌõУ׼ÇúÏߵķǺ㶨SDÇ÷ÊÆÅú×¢±£´æÒì·½²îÐÔ£¬ÕâÒâζ×ÅÐèҪʹÓÃȨÖغ¯Êý ¡£ËùÓеÄ3¸ö°¸ÀýÑо¿£¨A£¬B ºÍ C£©¶¼ÏÔʾ£¬²âÊÔÐźÅÔڽϸßÒ©ÎïŨ¶ÈÏ£¬¾ßÓиü¸ßµÄ±äÒìÐÔ£¬ÐèÒª¼ÓȨÄâºÏУ׼ÇúÏß ¡£Ò»Ñùƽ³£¶øÑÔ£¬ÈκÎÒ»¸öLBA¶¨Á¿ÆÊÎöÒªÁ죬¶¼»áÊÜÒæÓÚʹÓÃȨÖغ¯Êý ¡£

ÐèҪעÖصÄÊÇ£¬Ò»µ©È·¶¨ÐèҪȨÖØÒò×Ó£¬ÔõÑùÈ·¶¨×¼È·µÄȨÖØÒò×ÓÔò³ÉΪÖØÖÐÖ®ÖØ ¡£±¾ÎÄÍƼöµÄÒªÁìÊÇ£ºÊ×ÏÈ£¬´Ó²âÊÔÐźţ¨Y£©µÄ±ê×¼·½²î£¨¶ÔÊý±ä»»ºó£©Óë²âÊÔÐźÅƽ¾ùÖµ£¨¶ÔÊý±ä»»ºó£©µÄÏßÐԻعé¹ØϵÖУ¬È·¶¨ÆäбÂÊ£¬ÓÖ³ÆkÖµ£»È»ºó£¬½«Ð±ÂÊ£¨k£© ´úÈëÒÔÏ·½³Ì 1/Y2k ÖУ¬ÒÔÈ·¶¨È¨ÖØÒò×Ó£¨1/Y »ò 1/Y2£© ¡£

ÔÚ°¸ÀýÑо¿ A¡¢B¡¢C ÖУ¬ÏßÐԻعéµÄбÂÊ»®·ÖΪ 1.06£¬1.00 ºÍ 0.657; Òò´Ë£¬È¨ÖØÒò×Ó»®·ÖÔ¤¼ÆΪ2£¬2ºÍ1 ¡£ÔÚ°¸ÀýAºÍBÖУ¬È¨ÖØÒò×ÓΪ2; Òò´Ë£¬ÔÚУ׼ÇúÏ߻عéÄ£×Ó£¨4PL»ò5PL£©ÖУ¬Ê¹ÓÃÁËȨÖغ¯Êý1/Y2 ¡£¹ØÓÚ°¸ÀýC£¬È¨ÖØϵÊýΪ 1; Òò´Ë£¬È¨Öغ¯ÊýΪ 1/Y ¡£

ΪÁËÈ·¶¨¿É½ÓÊܵÄÇúÏßÄâºÏÄ£×Ó£¬Ó¦ÆÀ¹ÀÄâºÏÇúÏßµÄ4PLÓë5PLÄ£×Ó£¨²»¼ÓȨºÍ¼ÓȨ£©»ØËãŨ¶ÈµÄÀÛ»ý %REºÍÀÛ»ý %CV ¡£Ó¦ÖÐÑ¡Ôñ£¬ÔڿɽÓÊܵĹæÄ£ÄÚ£¬¾ßÓнϵ͵Ä%CVºÍ%RE£¬Ð£×¼µãÊýÄ¿½Ï¶àµÄ»Ø¹éÄ£×Ó ¡£ÈôÊÇÁ½Õ߶¼ÊÇÏ൱µÄ£¬ÔòÑ¡Ôñ¼ÓȨ4PLÄ£×Ó×÷Ϊ×îÖÕÇúÏßÄâºÏÄ£×Ó£¬¾ÙÐÐÒªÁìÑéÖ¤ºÍÑùÌìÖ°Îö ¡£Æ¾Ö¤ FDA Ö¸ÄÏ£¬Ó¦ÖÐÑ¡Ôñ¼ÙÉè×îÉÙµÄÄ£×Ó£¬¼´Ñ¡Ôñ×î¼òÆÓµÄÄ£×Ó ¡£Æ¾Ö¤Ï¸ÃܶȺÍ׼ȷ¶ÈÊý¾Ý£¬ÔÚËùÓÐ3¸ö°¸ÀýÖУ¬4PL¶¼ÊÇ»ùÓÚÕâЩ±ê×¼µÄ×î¼Ñ»Ø¹éÄ£×Ó ¡£

ΪÁËÑéÖ¤ËùÑ¡Ôñ»Ø¹éÄ£×ÓºÍȨÖغ¯Êý£¬¿ÉÒÔ×öÆäËûÆÀ¹À ¡£ÀýÈ磬ÔÚʹÓÃȨÖغ¯Êý֮ǰºÍÖ®ºó£¬¿ÉÒÔ½ÏÁ¿4PLºÍ5PLÄ£×ÓµÄ׼ȷ¶ÈºÍϸÃܶÈÐÐΪ ¡£±¾Îĸø³öÁË4PLÓë5PL£¨ÎÞ¼ÓȨºÍ 1/Y2¼ÓȨ£©µÄÀÛ»ý %CV ºÍÀÛ»ý %RE µÄ½ÏÁ¿£¬ÀÛ»ý %REµÄ¿É½ÓÊܹæģΪ¡À 20%£¬ÀÛ»ý %CV µÄ¿É½ÓÊܹæģΪ¡Ü20% ¡£

°¸ÀýAÅú×¢£¬Ê¹ÓÃÊʵ±µÄȨÖغ¯Êý¿ÉÒÔÌá¸ßϸÃܶȺÍ׼ȷÐÔ£¨¾ùµÍÓÚ10%£©ºÍÀ©Õ¹¶¨Á¿¹æÄ££¨0.317-178 ng/mL£© ¡£ÔÚ°¸ÀýBºÍCÖУ¬Ð£×¼ÇúÏßÄâºÏÒ²ÓиÄÉÆ ¡£°¸ÀýBÔÚ4PL»Ø¹éÄ£×ÓÉϼÓȨºó£¬ROQ»ñµÃÏÔÖøÀ©Õ¹£ºÎ´¼ÓȨʱΪ1.04-48.3 ng/mL£»¼ÓȨºóΪ 0.602-145 ng/mL£»5PLÄ£×Ó£¬Î´¼ÓȨ1.04-145 ng/mL£¬¼ÓȨºó0.602-48.3 ng/mL ¡£°¸ÀýC4PLÄ£×ÓÔÚ¼ÓȨºóROQ ÂÔÓÐÀ©Õ¹£ºÎ´¼ÓȨ2.06-79.3 ng/mL£»¼ÓȨΪ1.37-79.3 ng/mL ¡£

ÔÚ¶¨Á¿ LBA ÒªÁ쿪·¢Àú³ÌÖУ¬±¾ÎÄÏÈÈÝÁËÒ»¸ö¼òÆÓ¡¢Ò×ÓÚʹÓõľöÒéÊ÷£¬ÒÔÈ·¶¨Ð£×¼ÇúÏßµÄ×î¼Ñ»Ø¹éÄ£×ÓºÍȨÖØ ¡£ËùÍƼöµÄÒªÁ콫ѡÔñÒ»¸ö¼ÓȨµÄÇúÏßÄâºÏÄ£×Ó ¡£

1. ÔÚÒªÁ쿪·¢Àú³ÌÖУ¬ÖÁÉÙÐèҪʹÓÃ3¸ö×ÔÁ¦µÄ²âÊÔÔËÐжÔÄ£×ÓÑ¡Ôñ¾ÙÐÐÆðÔ´ÆÀ¹À; ¿ÉÊÇ£¬Ò»Ñùƽ³£½¨ÒéÔöÌíÔËÐеÄÊýÄ¿£¬ÒÔ±ãÔÚÑо¿Ç°Ñé֤ʱ£¬ÑéÖ¤ÇúÏßÄâºÏÄ£×Ó ¡£ÓÉÓÚ¶ÔÏìÓ¦-Îó²î¹ØϵµÄÔ¤¼Æ±£´æ¾ÖÏÞÐÔ£¬Òò´Ë²»½¨ÒéʹÓýÏСµÄÊý¾ÝÜöÝÍ£»

2. ÆÀ¹ÀÒì·½²îÐÔ£»

3. ÈôÊDZ£´æÒì·½²îÐÔ£¬¾Íͨ¹ýбÂÊÒªÁìÈ·kÖµ£¨¼´Ð±ÂÊ£©£¬È»ºóÅÌËãȨÖØÒò×Ó£¨È¨Öغ¯Êý=1/Y2k£©£»

4. ʹÓÃ׼ȷ¶È£¨%RE£©ºÍϸÃܶȣ¨%CV£©ÐÐΪÀ´Ñ¡ÔñºÍÑéÖ¤¸üºÃµÄ¼ÓȨ»Ø¹éÄ£×Ó£»

5. ½¨ÒéʹÓÃ×ÔÁ¦ÖƱ¸µÄÖÊÁ¿¿ØÖÆÑùÆ·£¨QC£©À´ÑéÖ¤ÆÊÎöÒªÁìµÄ¶¨Á¿¹æÄ£ ¡£

6. ÌØÊâÉùÃ÷

±¾ÎÄÈôÓÐÊ詺ÍÎó¶ÁÏà¹ØÖ¸ÄϺÍÊý¾ÝµÄµØ·½£¬Çë¶ÁÕß̸ÂÛºÍÖ¸Õý ¡£ËùÓÐÒýÓõÄԭʼÐÅÏ¢ºÍ×ÊÁϾùÀ´×ÔÒѾ­½ÒÏþѧÊõÆÚ¿¯, ¹Ù·½ÍøÂ籨µÀ, µÈ¹ûÕæÇþµÀ, ²»Éæ¼°Èκα£ÃÜÐÅÏ¢ ¡£²Î¿¼ÎÄÏ×µÄÑ¡Ôñ˼Á¿µ½¶àÑù»¯µ«Ò²²»¿ÉÄÜÍêÕû ¡£½Ó´ý¶ÁÕßÌṩÓмÛÖµµÄÎÄÏ×¼°ÆäÆÀ¹À ¡£

7. À©Õ¹ÔĶÁ



²Î ¿¼ ÎÄ Ï×
1. Azadeh M, et al. Calibration curves in quantitative ligand binding assays: recommendations and best practices for preparation, design, and editing of calibration curves. AAPS J.2017; 20(1):22.
2. Xiang Y, et al. A Simple Approach to Determine a Curve Fitting Model with a Correct Weighting Function for Calibration Curves in Quantitative Ligand Binding Assays The AAPS Journal (2018) 20:45 DOI: 10.1208/s12248-018-0208-7
3. O¡¯Connell MA, et al. Calibration and assay development using the four-parameter logistic model. Chemometr and intell lab syst. 1993; 20(2):97¨C114.
4. Gottschalk PG, Dunn JR. The five-parameter logistic: a characterization and comparison with the four-parameter logistic. Anal Biochem. 2005; 343:54¨C65.
5. Boulanger B, et al. Statistical considerations in the validation of ligand-binding assay. In: Khan MN, Findlay JW, editors. Ligand binding assay: development, validation, and implementation in the drug development arena. New York: John Wiley & Sons; 2010. p. 111¨C28.
6. Hawkins DM. The problem of overfitting. J Chem Inf Comput Sci. 2004;44(1):1¨C12.
7. ANVISA. Guide for validation of analytical and bioanalytical methods. 2003.
8. Findlay JW, Dillard RF. Appropriate calibration curve fitting in ligand binding assays. AAPS J. 2007;9(2):E260¨C7.
9. Finney DJ, Phillips P. The form and estimation of a variance function, with particular reference to radioimmunoassay. Appl Stat. 1977;26(3):312¨C20.
10. Finney DJ. Statistical methods in biological assay. 3rd ed. London, UK: Charles Griffith; 1978.
11. Box GEP, Hunter WG, Hunter JS. Statistics for experimenters. New York, NY: John Wiley & Sons; 1978.
12. Finney DJ, Phillops P. The form and estimation of a variance function, with particular reference to radioimmunoassay. Appl Stat. 1977;26:312¨C20.
13. EMA. Guideline on immunogenicity assessment of biotechnology derived therapeutic proteins. Committee for medicinal products for human (CHMP), London, UK. 2008.
14. US FDA. Guidance for industry: bioanalytical method validation, draft guidance, US FDA, center for drug evaluation and research, MD, USA. 2013.
15. MHLQ. Japan, draft guideline on bioanalytical method (ligand binding assay) validation in pharmaceutical development.2014.
16. Carroll RJ, Ruppert D. Transformation and weighting in regression. London: Chapman Hall; 1988.
17. Lavasseur LM, et al. Implications for clinical pharmacodynamics studies of the statistical characterization of an in vitro anti-proliferation assay. J Pharmacokinet Biopharm. 1998;26:717¨C33.
18. Dudley RA, et al. Guidelines for immunoassay data processing. Clin Chem. 1985;31(8):1264¨C71.
19. Shah VP, et al. Analytical methods validation: bioavailability, bioequivalence, and pharmacokinetic studies. Pharm. Res. 9:588¨C592 (1992).
20. Raab GM. Estimation of a variance function, with application to immunoassay. Appl Stat. 1981;30:32¨C40.
21. Findlay JW, et al. Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective. J Pharm Biomed Anal.2000;21(6):1249¨C73.










ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
  • µç»°£º020-38473208
  • µØµã£ºÁÙ´²ÖÐÐÄ£º¹ãÖÝÊÐÌìºÓÇø»ª¹Û·1933 ºÅÍò¿ÆÔƹ㳡A¶°7Â¥ / ʵÑéÊҵص㣺¹ãÖÝÊлÆÆÒÇøÄÏÏèÒ»Æð62ºÅ
  • »¥ÁªÍøÒ©Æ·ÐÅÏ¢·þÎñ×ʸñÖ¤Êé
Copyright ? ÓÀÀÖ¹ú¼Ê All Rights Reserved ÔÁICP±¸13039920ºÅ £¨ÔÁ£©¡ª·Çı»®ÐÔ¡ª2020-0084

ÔÁ¹«Íø°²±¸ 44011202001884ºÅ

Powered by vancheer
Copyright ? ÓÀÀÖ¹ú¼Ê All Rights Reserved ÔÁICP±¸13039920ºÅ £¨ÔÁ£©¡ª·Çı»®ÐÔ¡ª2020-0084

ÔÁ¹«Íø°²±¸ 44011202001884ºÅ

Powered by vancheer
ÓÀÀÖ¹ú¼Ê¡¤F66(Öйú)¹Ù·½ÍøÕ¾Èë¿Ú
¡¾ÍøÕ¾µØͼ¡¿¡¾sitemap¡¿